KNJN FX2 ARM development boards

© 2007, 2008, 2009, 2010, 2011, 2012, 2013 KNJN LLC
http://www.knjn.com/

This document applies to the following boards.

® Saxo-L
® Xylo-L
® Xylo-LM

Document last revision on August 28, 2013

KNJN FX2 ARM development boards Page 1

http://www.knjn.com/

Table of Contents

T ATL= [T TSSO 4
T TS QUIAE. ..ttt e ettt e e ettt e e e ettt et e e e e atae e e e e e eaaseeeeeesaabaaeeeeeassseeeeeeaassseeeeesansaseeee e s ntsaeeeeeasnnnnnnnnnn 4
T.2 ARM the BaSY WAY.....eeeiiiiiiii ittt ettt oottt e e e e b ettt e e e o e a b ettt e e e o n bttt e e e e e nbe et e e e e am bbb et e e e e anbee e e e e e annnneeeaesaaaaana s 4
1.3 KNUN FPGA + ARM DOGIAS.....coiiiiiiiiiii ettt e et e e e ettt e e e e et e e e s ess b e e e e e e snsbaeaeeeansaeeaeseannsaneaeaaaaaeens 4
N 1Y oo Yo =TT) S 4

248 © =T 0 1 I USSP 5
I N 1Y 1 SR UURPRPRINt 5
A O =1 10 11 B SRR 5
2.3 JTAGH-OVEI-USB......coiiiiiiiiiie ettt e ettt e e e e ettt e e e e e sttt eeeeessteeeeeeaansteeeeeeaanteeeeeeeanstaeeaeeaansteeeeeeaantaneaeesanennnnnnnnnes 5

B RUN OPENOCD.... ..ottt ettt e e e e e e e e e e ee e e et aat s s seeeeeeeeeeeeeeeesseaaaasssssssseseeeeeaaeaeeeeessaaaaaaaseeeeeeesssnnnnnns 6
R R I C 1= =T TSP T PO PPPPTPPOPPPPN 6
B I 1= =) o 1= | USSP 6
R O 10 o {151 WO o =T @ @ B YTt] o RSP 6

4 OpenOCD flash MEMOIY SUPPOIco ittt e et e e e ettt e e e e s bt et e e e e s abee et e e e aneeeeeeesanneeenebnennnnns s 7
g B O a1t =T =] IR = L 7
=TT £ T =T o PR 7
4.3 Program the flash.......... ettt e e 7

5 Yagarto ARM T00ICNAIN........eeiiee ettt e e e e e ettt e e e oo bbbt e e e e e a b et e e e e e a e e e e e e e e e e e e e e e aaeaaaes 8
Lo 0t B =T - o (o PP 8
5.2 Yagarto's first file: OpPenOCD + t0O0IS..........cuiiiiiiiiiiiee it e s e e e et e e e s st e e e e s sasaeeeessasssaeeeesaaaaa s e e e e e e e aaaaeeas 8
5.3 Yagarto's second file: GNU ARM tOOICN@IN...........ccuiiiiieiiiiiie et e et e e e et e e e e e et e e e e e s nraeeaeeeaeens 8
LR €= T F= T (o X3 W) o] 4 =1 L PP 8

LSO LU {1y A LY o] o] [=Tox APPSR 9
L2 B O] o 4] o L= PP 9
B.2 RUNL...c ettt e ettt e e oo et e e e e e et —— e e e e e eeab—eeeeeeatteeeeeeaat—eeeeeeaaateeeeeeeaahbeeeeeaaabbeeaeeeaaabaraeeeaaaraaeaeaeeeees 9

A LTS3 | g e =T oTU o o oY SRR 10
A O] 1T [y g o |) SO PPPPUPPPPPRPPPIN 10
7.2 DEDUG IN RAM. ..ottt e e oo b b et e e e oo a b et e e e e aa b bt e e e e e e an b bt e e e e e e R b e et e e e e e e e e e e eeaaaaaaaaaaaaaaas 11
RS I D L= o TN To T T o F=] o P TP PPRP PRI 11

LS 0 o] o <7< T8 | RSP 12
S T I =T =T (o S 1 o 1 S PTR 12
S T2 o] o F-T= 0 oo o1 T [0 =1 1] o TSRS RS 12

9 MiISCElIAaNEOUS OPENOCDttt e e e e e e e e e e e e e e ettt aaaeeeeeeeeaaaeeeeeeeaeaaassasbesseeaeeeeaeaeeeaaeesestbaaaaees 13
9.1 RUN OPENOCD MANUAIIY......cciiiii ittt e e e e e e e e e e e e e e e e eeeaeeeeeeesaeaaaabsbsasaeeeeeeaaaaeeessasaaaannnssnsesaanaeeess 13
LS IS (o] T @ o 11 o 1@ L2 I J RSP PPR R 13
O.3 RUN TEINEL. ..ttt h e oot e bt e e s b et e et et e e 1 b et e e b et e e sabe e e s bb et e snr e e et e e e e e e e e aans 13
9.4 OpenOCD documentation ON the WED...........oii e e e e e e e et e e e e e e e e 13

LI ST o2=Y =T 1= o 10 E 3 e RSP 14
LT I 1Y o3[Tod OO RO 14
TO.2 AR PN, .. itiiiiie e ittt e e ettt e e e ettt e e e e ettt eeesaatteeeee e s saeaeeeeaanasaeeeeeaaa st aeeae e e aaheeeeeeannteeeaeeaannraeaeeeaarreeaaeaeeaeaaaaaaaaaaees 14
(LR I e O 4 T=T0 L] YN 1 0 E=T o] o] o TP PR PRUPPPPPPPP 14
L0 @] =10 1015 N eTe] o aT=Tox i o] TN o] o] o] [T o o TSSO 14
10.5 LPC213x documentation 0N the WED..........ooi ittt e e e e e e e e e e e e e e e e e e eeeeennnn 14

0 S PRUPUPPPRRIN 15
11.1 LPC @nd FPGA CONNECHONS.uiiiieiiiiiiiie ettt e e e ettt e e e sttt e e e e ettt e e e e e s st e e e e e s anste e e e e e s sbeeeeeeeansbaeaaeaaeaeaaeaaaaaaaaaaens 15
11.2 Alternate fUNCHON LPC PINS.......ooooiiiiiiiiee ettt e e e e e e e e e e e e s et b st aeeeeeeeaaaeeeesesaasasassssassnneeeeeens 15

(P2 = To T T o I = Yo 11 £ SURRRRPPN 16

KNJN FX2 ARM development boards Page 2

KNJN FX2 ARM development boards Page 3

1.1 This guide

Welcome to the KNJN FX2 ARM development boards guide.

This guide is partitioned in short and easy to read chapters, and shows how to work with your ARM board. In particular, it
explains step by step how to:

e Start JTAG communication with the ARM
e Compile ARM projects
® Run and debug from RAM and Flash

1.2 ARM the easy way

The KNJN ARM boards are easy to use. KNJN boards are jumper-less and work right out of the box with a simple USB
connection, so that you get up to speed quickly and concentrate on your task.

1.3 KNJN FPGA + ARM boards

This document applies to the following KNJN ARM processor boards:

e Saxo-L

e Xylo-L

o Xylo/-LM
Since the KNJN development boards also host an FPGA, refer to the “KNJN FX2 FPGA boards” guide for additional
information.

The KNJN guides are available from http://www.knjn.com/docs/

1.4 ARM processor

The ARM processor used on your KNJN board is an NXP (previously Philips) LPC2132 or LPC2138, which includes an
ARM7TDMI core, SRAM, Flash, and peripherals.

The difference between the LPC2132 and LPC2138 mainly lies in the memory available.

LPC2132 LPC2138
RAM 16KB 32KB
Flash 64KB 512KB

KNJN FX2 ARM development boards Page 4

http://www.knjn.com/docs/

2 OpenOCD

2.1 ARM JTAG

The ARM7TDMI core has an on-chip debug circuitry (embedded ICE) that is controlled through JTAG, and allows to take
control of the ARM core.

2.2 OpenOCD

OpenOCD, or “On-Chip Debugger*, is an open source JTAG controller software for ARM processors. It is easy to use yet
quite capable:

e Support for software and hardware ARM breakpoints.
o Interface with source-level debuggers through its GDB server.
e Flash memory programming.

OpenOCD home page can be found at http://openocd.berlios.de/web/

OpenOCD is the software used by KNJN boards to control the ARM processors. OpenOCD and its JTAG server are
provided in the KNJN boards startup kit.

2.3 JTAG-over-USB

Thanks to JTAG-over-USB, the KNJN ARM board is completely controlled through USB, without needing a separate JTAG
cable. A separate JTAG cable can nonetheless be used if required (for example, if the board USB interface is used for
other purposes). The ARM JTAG signals are available on header pins for that purpose.

KNJN FX2 ARM development boards Page 5

http://openocd.berlios.de/web/

3 Run OpenOCD

3.1 JTAG server

OpenOCD uses a JTAG server to be portable. The server is part of KNJN's FPGA configuration tool, so running
OpenOCD is just a few clicks away:
® Run FPGAconf
Select your board (board menu) and ARM (“Options/ARM LPC” menu)
Go to the ARM tab
Check the “Run OpenOCD” and “Open Telnet session” boxes
Click on “Start JTAG server”

#y FPGAcont EENT

Boards Tools Options Exit!

i Start JTAG server |

v Run Open0CD when server iz started
[v Open a telnet seszion when Open0CD i started

Sawo-l FPGA | 120 | 8051 ARM

u

This opens OpenOCD and telnet windows.

BN cpenocd.exe

Open On—Chip Debugger

accepted ‘telnet’ connection from @

gﬂ Telnet localhost |ﬂ‘ﬁ

: gpen On—Chip Debugger "

Notes: If you are running a network firewall on your machine, respond “allow” to the network connection pop-ups.

3.2 Telnet pitfalls

e On Vista & Windows 7, Telnet is not installed by default. Go to “Control panel/Programs and Features”, click on
“Turn on/off features”, and enable the “Telnet client” checkbox.
e On Windows x64, telnet may not run directly when the JTAG server starts. You can either
1. move telnet.exe from C:\windows\system32 to C:\windows directory
or
2. open telnet manually using a command prompt “telnet localhost 4444” once openocd is running

3.3 Our first OpenOCD session
Now we can play with the ARM processor.

The KNJN boards ship with a design in the LPC flash that makes the board's LED glow. Try to halt the ARM by issuing the
command “halt”in the telnet session. The LED stops blinking. Now try the “mdw 0 100” command to display the
memory content from address 0. Finally resume the processor by using the command “resume”. The LED starts glowing
again.

To see the list of things you can do, use the “help” command.

KNJN FX2 ARM development boards Page 6

4 OpenOCD flash memory support

Let's check, erase and program the ARM LPC's flash.
4.1 Check the flash status

The ARM LPC has an on-board flash memory. For example, to check the flash status (to see if it is erased or not), type:

® mww OxEOQ1FC040 1 (thatswitches the LPC memory mapping off - for details, see 10.3)
® flash erase check 0 (thattakes afew seconds) (notice the spaces and underscore in the command)
@ flash info 0

That shows a list of flash sectors, with their status.

m, | Telnet localhost i

Open On—Chip Debugger

> muww BxEA1FCA48 1

» flazh eraze_check @

successfully checked erase state

» flazh info @

#HA: 1pc2008 at BxPAUAAPRAA, =zize BxHAA1800A,. buswidth B, chipwidth @
#8: 900000000 (Ox188B8 4kB> not eraszed. protected
#1: HxA0001800 (Bx1888 4kB) erased, protected
#2: BxB0BEZ2000 (Ax100@ 4kB)> erased. protected
#3: Hx00003800 (Bx1888 4kB) erased, protected
##4: BxB00E4008 (Bx100@ 4kB)> erased. protected
#5: 9x000058000 (Ox1888 4kB> erased, protected

#6: BxBOBEGEAEA (Ax100@ 4kB)> erased. protected

#7: 9x000078900 (Ox1880 4kB> erased, protected

#8: BxBOPEEEENA (BxBUHE 32KkB> erased. protected
%chBEB flash driver variant: 2. clk: 248008

Notes:

1. The ARM needs to be stopped for these commands to work, so issue the “halt” command to stop the ARM if
required.
2. The “protected” status shown by “f1ash info 0” command is meaningless for the ARM LPCs.

4.2 Erase the flash

Use “flash erase 0 0 8”to erase the whole flash of an LPC2132 . The “8” is the last sector number. Change it to “26”
to erase the whole LPC2138.

4.3 Program the flash
Use “flash write 0 filename 0”.
Of course, replace “filename” with the file name that you want to program (including its path).

The startup kit includes compiled files that can be programmed in the flash. For example, try “LPC.flash.LEDglow.bin”.
Once programmed, it is executed at power up, and makes the LED glow.

For big files, flash programming can be sped up by using the command “arm7 9 dcc downloads enable”.

KNJN FX2 ARM development boards Page 7

5 Yagarto ARM toolchain

5.1 Yagarto

Yagarto provides a complete (and free!) development environment for the ARM. It includes an ARM GNU toolchain
(compiler & debugger) that runs natively on Windows, and works nicely with OpenOCD.

YAGARTO Yet another GNU ARM toolchain

wihy?
Download

Why another GNU ARM toolchain?

Howto? Initially | was searching for a toolchain with the following featuras:

Support
License infarmation + not based on Cygwin
Mote + wiarks with Eclipse

+ cheap for the beginners

| found some native Windows toolchains based on MinGW, but the GDB of these
toolchains doesn't work properly under Eclipse. That's why | decide to create a new
toolchain suited for my requirsments. YAGARTO was born

YAGARTO is divided in three packages with the following components:
+ Open On-Chip Debugger f Support for J-LinkSAM-ICE GDB Server
+ Binutils, Newlib, GCC compiler, and the Insight debugger
+ Eclipse Platform Runtime Binary, Eclipse COT and CDT plugin for the GDB
embedded debugging

Zylin made some madifications in Eclipse COT for Windows + a plugin to improve support
for GDE embedded debugging in COT.

This wersion of YAGARTO does net support the Cortex-M3 cpu. If you need a toolchain
for this cpu, take a look at Cross\Works for ARM

To get Yagarto, download these files from http://www.yagarto.de/.

1. OpenOCD + tools (about 2 MB)
2. Yagarto GNU ARM toolchain (about 31 MB)
3. Eclipse IDE + patches (about 72 MB)

Please note that Eclipse requires Java on your machine. If unsure, download also the Java runtime (you can get it from
http://java.sun.com/javase/downloads/).

5.2 Yagarto's first file: OpenOCD + tools

The first file contains a version of OpenOCD, and some tools. Your board doesn't use this version of OpenOCD but it
needs the tools, so install this file. By default, this gets installed into “C:\Program Files\openocd”.

5.3 Yagarto's second file: GNU ARM toolchain

This second file contains the GNU ARM compiler and more tools, including the insight debugger. By default, this gets
installed into “C:\Program Files\yagarto”.

Now we are ready to compile our first ARM project (we'll install Yagarto's third file later).

5.4 Yagarto's tutorials

Yagarto's website has tutorials on how to install and check each step of the installation process. You may want to follow
the instructions to learn more about Yagarto (remember that when the tutorial asks to run OpenOCD, run it from the JTAG
server window).

KNJN FX2 ARM development boards Page 8

http://java.sun.com/javase/downloads/
http://www.yagarto.de/
http://www.yagarto.de/

6 Our first ARM project

6.1 Compile

Now that Yagarto's GNU ARM toolchain is installed, let's compile our first ARM project.

e Locate the “ARM project\LEDglow.LPC2138.ram” directory in the startup kit. Move it to a location where the folder
name doesn't include any space, like “c:\LEDglow” (Insight doesn't like spaces).

e Open a command line prompt (in the directory you just moved everything into) and run the command “make all”.
This compiles the “src\main.c” file and creates “test.elf” and “test.hex” files.

6.2 Run

Now let's load and run the code into the ARM. Get OpenOCD and Telnet running (paragraph 3.1) and issue these
command in the telnet window:

® halt

mww OxEOQO1FC040 2
load image test.hex
soft reset halt
resume

Note: for the “1oad image” command, you must include the full path to “test.hex”.

@il Telnet localhost L= | B -

> halt

regquesting target halt...

» Target B halted

target halted in ARM state due to debug request. current mode: Supervisopr
cpsr: @x30000013 pc:- Bx40BB01 a0

> muw BxEA1FCA48 2

» load_image C:sLEDglowstest._.hex

4680 byte written at address Bxx4000000Q8

dovnloaded 468 byte in Bz 358080us=s

> soft_reset_halt

regquesting target halt and executing a soft reset

Target B halted

target halted in ARM state due to debuy reguest, current mode: Swupervisor
cpsr: Bx3000BAA3 pc: BxHBBBBOBHE

¥ Pesume

Target B resumed

Voila! The code is running in the ARM... and the LED is glowing happily.

Notes:

® You can issue the command “wait halt” after the “halt” above to make sure the halt command has been
completed (that would be important in a script because halt works asynchronously, so may return before it
actually happened).

® The “‘mww 0xE01FC040 2” command is necessary because we run in RAM (see LPC memory mapping for more
information).

KNJN FX2 ARM development boards Page 9

7 Insight debuqgger

Now that we know how to load and run code into the ARM “by hand”, let's try with a debugger, which loads the code for
us, and also allows to “source-level” debug it.

7.1 Configure Insight

First we configure Insight so that it knows how to communicate with OpenOCD.

e On the command line, run the command “debug_inram.bat”. This opens the insight debugger.
e Ininsight, open the target selection window (using the menu “File/Target Settings”) and select TCP on port 3333.
Make sure all the other options are set as shown below.

774 Target Selection &‘J

— Connection W Set breakpoint at 'main’
Target IRemote/TCP =

™ Set breakpoint at "exit’

Hostname: |Ioca|h05t _
™ Set breakpoint at

Port: 13333

I Display Download Dialog

= Fewer Options

—Run Options

Fun hMethodd

© Run Frogram

I Attach to Target

¥ Download Program & Continue from Last Stop

Command to issue after attaching:

Ok Cancell Help |

KNJN FX2 ARM development boards Page 10

7.2 Debug in RAM
Let's start debugging.

e Use the Run/Run command, and say “Yes” to restart the program. This loads the program in the LPC RAM.
e Use the Control/Continue command to start the program. Check your board, the ARM LED should glow. That

means that the ARM processor is executing the program.
e You can also stop the program, watch variables, put breakpoints, step line by line, etc...

& main.c - Source Window |E|E|-E_h]
File. Run “iew Control Preferences Help
2D VP | BAaEL @2 | & al
|main.c =] |main =] SOURCE =]
5L H#define IODIRA1 (*(volatile unsigned long *){GPID_BASE_ADDR + Bx18)) =
C6 #define IOCLRA1 {*{volatile unsigned long =){GPIO_BASE_ADDR + Bx1C))
57
58 int main (void)
- 5o ¢
- Ga IODIRA = 9x80000088; /f turn on the LED driver (PB.31)
61
- 62 unsigned int j = B;
63 unsigned int k;
- G4 int inc = @x100008;
G5
a6 while{1}
67 {
- 68 j += inc;
- 69 if{j+k>j) IOSETO = 0xB0000000; else IOCLRO = OxB0000088; // 1it or clear
- 79 k += j; -
|Program stopped at line 68 |4““““154| 68

The program is debugged in RAM, which is ok for small programs.

7.3 Debug in Flash

The ARM has two hardware breakpoints so can also debug a program in flash (ROM). The flash is bigger than the RAM,

so that allows debugging bigger programs.

Use the “LEDglow.LPC2138.ram&flash.zip” project as an example.

1. Compile using the “make_inflash.bat” script. This creates a “test.bin” binary file.
2. Run OpenOCD, open a telnet session and Program the flash with “test.bin”.
3. Run the “debug_inflash.bat” script to debug the program.

KNJN FX2 ARM development boards

Page 11

8 Eclipse IDE

8.1 Yagarto's third file
Run it - this installs the Eclipse IDE into “C:\Program Files\yagarto ide”

8.2 Eclipse configuration

Follow Yagarto's website tutorial to configure Eclipse to use the GNU toolchain. The tutorial is long but well documented

and easy to follow, so it is not duplicated here.

Remember that when the tutorial asks you to run the GDB debugger, start the JTAG server.

Once Eclipse is configured, you can edit, compile and debug with it.

- Ropsamce - main.c - Bolipsa IPLatlo i

He Edb Refyitr Baegms Fegch Poled Bun dnden Hedp
pi = am Q- 5 = LIRE- R " B Rk Db Fcarca
wdetine ISCLPD (*rolatile unsigned Llong *) (0PI0G _BABE_ADDR + DxDCH) L
= [bt Bdefine TOFIN] [(*irelabile uneigned long ") (GPID _BASE ADDR + Ox10))
|
5 dep #define IOEETI i®wolatile unsigned Long *) (0PI0_BABE _ADDR + Oxid))
T T #define TI0IEL [(*irelabtile uneigned long ") (GFIC _BASE_ADDR + Ox18))
5 i #efine 1O0CLR1 i rolatile unsigned Long *) (0PI0 BABRE ADDR + Ox1CH)
1 1] =
5 - IRt BELL [TéLd|
gt
prokec LD Ll = D e
5 chrmare basd
Findalds ahElghed ARE) = O3
[mmpigned ink k;
e ARE 1nS & OE$ol;
3 wet ramp whilejl]
7 = dmmp
AE [jekEry] LOSETD & OxEsll00000: else LOCLPD = OxBODOD000:
E += §;
AL [j==0] inc®==int:
ot Captie % W o @
_padN S
| Eypesdsre b rebmrm 0 2
& aMO REE DO
EPRD o
¥XEm
B KR — —
50 Tasky 5 Comole X W lges =
KPR whermirssted = B _carfgur foe [Enbeided detog (Fatsn] i Progr e Fle bregart ol brd srreol -, go L)L 7007 10052 PH])
=N i) Targesr mrares)] haloed -1-
& KiAri tmrget halted in ARA stmbts dus bo single step, curcent mode: SupeEcvisoc
o0n1 Tpers OEI00000LT poi OxdDD00Ls0
I requerting target halt mnd sxecubting = zoft ceset
safrusre Dreakpoints snpsnled
Ol 180802 DIEEII002
S R — = . .
[=i e Smt Irewt | 8122
KNJN FX2 ARM development boards Page 12

9 Miscellaneous OpenOCD

9.1 Run OpenOCD manually

Usually FPGAconf runs OpenOCD for you (when starting the JTAG server), but you can also run it yourself. For example,
opening OpenOCD manually allows using the JTAG server remotely.

OpenOCD uses a configuration file that is specified using the “-f’ switch. So the command to run OpenOCD locally looks
like this:

openocd.exe -f openocd LPC2132.cfg

9.2 Stop OpenOCD

You may want to stop OpenOCD once you are done playing with the ARM. To stop OpenOCD, try one of these (in order of
preference):
1. If you have a telnet session opened, type “shutdown” (or “sh” in short).
2. Close OpenOCD's window.
3. Close the JTAG server manually (click on the button close, as shown below), preferably when no OpenOCD
session is active.

Cpen0CD JTAG server

The JTAG server is running.

Cloze JTAG server

9.3 Run telnet

When OpenOCD is running, a telnet session allows to communicate with it on a “command-line” like window.

FPGAconf allows opening a telnet session automatically for you. But telnet sessions can also be opened manually by
running the command “telnet localhost 4444” (either as a line of command, or using the “Start/Run...” button of Windows).

'?Run Lihj

=== Typethe name of a program, folder, docurment, or Internet
tresource, and Windows will open it for you,

] l | Cancel | | Browvse..,

Note: With Vista & Windows 7, Telnet is not installed by default. Go to “Control panel/Programs and Features”, click on
“Turn on/off features”, and enable the “Telnet client” checkbox.

9.4 OpenOCD documentation on the web

Home page http://openocd.berlios.de/web/

OpenFacts http://openfacts.berlios.de/index-en.phtml?titte=Open_On-Chip_Debugger

KNJN FX2 ARM development boards Page 13

http://openfacts.berlios.de/index-en.phtml?title=Open_On-Chip_Debugger
http://openocd.berlios.de/web/

10 Miscellaneous LPC

10.1 ARM clock

The LPC is clocked externally by a fixed 24MHz signal. The ARM core clock can be raised up to 60MHz by using the LPC
internal PLL (see the LPC213x user manual for more details).

Note that the ARM clock is independent of the FPGA clock (the FPGA clock can be set to 12, 24 or 48MHz through
FPGAconf). But both clocks share a fixed relashionship because they are created from the same crystal.

10.2 ARM pins

Most ARM 10s are exported on headers around the ARM but a few special ARM pins are available on individual header
pads.

ARM special pins Saxo-L Xylo-L/-LM

RTXC (real-time clock) Available at the bottom of the board Available on header pins

VBAT Not available Available on a small pad

VREF Wired to 3.3V Available on a small pad (1Kohms pullup resistor to +3.3V)
Notes:

e Check the KNJN FPGA + ARM boards documentation for the pin locations.
® Some ARM IOs are also connected to FPGA 10s, see chapter 11.

10.3 LPC memory mapping

The first 64 bytes of the ARM memory space at location 0 are special (they hold the reset and interrupt vectors).

The LPC normally maps flash memory at location 0, but during RAM debug sessions, we don't want to worry about the
flash (it would be a pain to have to re-program the flash every time we want to debug in RAM). So the LPC implements a
feature to allow mapping this space to RAM. The space is also mapped to a “boot loader” after reset (a special feature of
the LPC that allows programming the flash from a serial port).

The MEMMAP “Memory Mapping control register” resides at address OXxEO1FCO040 in the LPC memory space and can
take 3 values:

MEMMAP values Usage When to use

0 (Boot Loader Mode) | Interrupt vectors are mapped to the Boot-Block The device boots

1 (User Flash Mode) Interrupt vectors are not re-mapped (reside in Flash) | We want to run code from Flash, or check if the flash is erased
2 (User RAM Mode) Interrupt vectors are mapped to static RAM We want to run code from RAM

For more details, check the MEMMAP register in the LPC213x user manual.

10.4 OpenOCD connection problem

OpenOCD connects to the LPC using JTAG. You are allowed to program the LPC with a file that uses the JTAG pins as
10s, knowing that this prevents OpenOCD to work. Power-cycling the board returns the JTAG functionality.

But if the LPC flash is programmed with such file, OpenOCD cannot connect anymore even if you power-cycle the board.
The workaround is to connect the pin P0.14 to ground at power-up. That prevents the LPC to load from flash at power-up
(so allows OpenOCD to connect regardless of the flash content).

10.5 LPC213x documentation on the web

Home page http://www.nxp.com/pip/LPC2132FBD64.html

Data sheet http://www.nxp.com/acrobat/datasheets/LPC2131_32_34_36_38_4.pdf

User Manual http://www.standardics.nxp.com/support/documents/microcontrollers/pdf/user.manual.lpc2131.Ipc2132.1pc2134.Ipc2136.lpc2138.pdf

KNJN FX2 ARM development boards Page 14

http://www.standardics.nxp.com/support/documents/microcontrollers/pdf/user.manual.lpc2131.lpc2132.lpc2134.lpc2136.lpc2138.pdf
http://www.nxp.com/acrobat/datasheets/LPC2131_32_34_36_38_4.pdf
http://www.nxp.com/pip/LPC2132FBD64.html
http://www.standardics.nxp.com/support/documents/microcontrollers/pdf/user.manual.lpc2131.lpc2132.lpc2134.lpc2136.lpc2138.pdf
http://www.standardics.nxp.com/support/documents/microcontrollers/pdf/user.manual.lpc2131.lpc2132.lpc2134.lpc2136.lpc2138.pdf

11.1 LPC and FPGA connections
KNJN development boards host an FPGA, and many LPC pins are connected to the FPGA, so that they can

communicate together.

More connections can be added if required by soldering wires to the board.

11.2 Alternate function LPC pins

Most LPC pins can have different personalities. For example:

LPC pin SAXO-L XYLO-L/-LM
P0.0 (TXDO)

P0.1 (RXDO)

P0.2 (SCLO) FPGA pin 22
P0.3 (SDAO) FPGA pin 20
P0.4 (SCKO) FPGA pin 19
P0.5 (MISO0) FPGA pin 18
P0.6 (MOSI0) FPGA pin 16
P0.7 (SSELO) FPGA pin 15
P0.8 (TXD1) FPGA pin 14
P0.9 (RXD1) FPGA pin 12
P0.10 (RTS1) FPGA pin 11
P0.11 (CTS1) FPGA pin 9
P0.12 (DSR1) FPGA pin 8
P0.13 (DTR1) FPGA pin 6
P0.14 (DCD1) FPGA pin 5
P0.15 (RI1) FPGA pin 4
P0.16 (EINTO) FPGA pin 3
P0.17 (SCK1) FPGA pin 51 FPGA pin 2
P0.18 (MISO1) FPGA pin 52 FPGA pin 199
P0.19 (MOSI1) FPGA pin 56 FPGA pin 200
P0.20 (SSEL1) FPGA pin 57

P0.21 (PWMS5)

P0.22 (CAP0.0) FPGA pin 53

P0.23 FPGA pin 204
P0.25 (AD0.4) FPGA pin 55

P0.26 (AD0.5)

P0.27 (ADO.0)

P0.28 (ADO.1)

P0.29 (ADO0.2)

P0.30 (ADO.3) LED2

P0.31 LED1 LED1

e The pins RXD and TXD (P0.0/1 or P0.8/9) allow the implementation of a serial asynchronous interface (like RS-

232).

® The pins SCK, MOSI and MISO (P0.4/5/6 or P0.17/18/19) allow the implementation of a serial synchronous

interface (like SPI). Check the startup kit's “ARM project — SPI”, and fpga4fun's SPI project

KNJN FX2 ARM development boards

Page 15

http://www.fpga4fun.com/SPI.html

12 Board layouts

The board layouts are available in the “KNJN FX2 FPGA boards.pdf’ document from http://www.knjn.com/docs/

Happy ARM and LPC'ing.

KNJN FX2 ARM development boards Page 16

http://www.knjn.com/docs/

	1 Welcome
	1.1 This guide
	1.2 ARM the easy way
	1.3 KNJN FPGA + ARM boards
	1.4 ARM processor

	2 OpenOCD
	2.1 ARM JTAG
	2.2 OpenOCD
	2.3 JTAG-over-USB

	3 Run OpenOCD
	3.1 JTAG server
	3.2 Telnet pitfalls
	3.3 Our first OpenOCD session

	4 OpenOCD flash memory support
	4.1 Check the flash status
	4.2 Erase the flash
	4.3 Program the flash

	5 Yagarto ARM toolchain
	5.1 Yagarto
	5.2 Yagarto's first file: OpenOCD + tools
	5.3 Yagarto's second file: GNU ARM toolchain
	5.4 Yagarto's tutorials

	6 Our first ARM project
	6.1 Compile
	6.2 Run

	7 Insight debugger
	7.1 Configure Insight
	7.2 Debug in RAM
	7.3 Debug in Flash

	8 Eclipse IDE
	8.1 Yagarto's third file
	8.2 Eclipse configuration

	9 Miscellaneous OpenOCD
	9.1 Run OpenOCD manually
	9.2 Stop OpenOCD
	9.3 Run telnet
	9.4 OpenOCD documentation on the web

	10 Miscellaneous LPC
	10.1 ARM clock
	10.2 ARM pins
	10.3 LPC memory mapping
	10.4 OpenOCD connection problem
	10.5 LPC213x documentation on the web

	11 IOs
	11.1 LPC and FPGA connections
	11.2 Alternate function LPC pins

	12 Board layouts

